Advancing Bacterium Research with the Azure c400 at Virginia Tech

Categories
Customer Spotlight Imaging Western Blotting

Customer Spotlight: Tam Nguyen, PhD Candidate at Virginia Tech

Since the release of this interview, the Azure c400 has been upgraded to the Azure 400, a flexible fluorescent imager that enables three color fluorescent detection for dyes in the visible range.

Microbiome research has grown exponentially in the last decade, and PhD candidate Tam Nguyen is no stranger to the field. After three years as a molecular biologist and biochemist at Virginia Tech, she has rapidly furthered our current understanding of how microbes may interact with colorectal cancers.

Nguyen is a member of the Slade Lab, headed by Associate Professor Dr. Daniel Slade. The lab’s primary focus is to better understand how a commensal oral bacterium may influence the colorectal tumor microenvironment and induce adverse inflammatory responses in the host. The Slade lab is investigating the host-Fusobacterium interactions and their roles in bacterial pathogenesis and altered host responses in colorectal and pancreatic cancers.

"We like the chemiluminescence application because of its practicality, cost-effectiveness, and easy usage,"

Nguyen and the lab have made great strides in understanding how Fusobacterium nucleatum, an opportunistic oral pathogen that has garnered increasing attention, interacts with colorectal cancer cells. The Slade Lab is one of the few labs with the capacity to make genetic modifications in Fusobacterium nucleatum, making them a great resource to help move the field forward to better expand on the topic of tumor microbiome. Through her years at Virginia Tech, Nguyen has helped uncover how Fusobacterium can establish invasion and long-term survival.

Azure 400 Visible fluorescent imaging system
The Azure 400 is capable of three-channel visible fluorescence detection, which enables sensitive multiplex detection of Western blots, fluorescent biomolecules and Cy2/Cy3/Cy5 or similar fluorochromes. This fluorescent imager allows users to simultaneously image and quantify up to three different targets.
Tam Nguyen with Azure c300
Nguyen, pictured with Western blot results on the lab's Azure c400 Imager

To begin her research, Nguyen cultures F. nucleatum statically in an anaerobic chamber to mimic the living condition of this bacterium since it resides in oxygen-free pockets in the mouth. To focus on bacterial intracellular survival, Nguyen extracts protein lysates from the bacteria once they are at certain growth characteristics, and performs Western blot analysis followed by visualization with the Azure c400 Imaging System.

Nguyen regularly utilizes this approach to understand the differences in protein expression among bacterial strains that have been genetically modified. She grows her bacteria in an anaerobic chamber with the appropriate gas mixture but skips the shaking step in the incubation period due to its non-motile nature. “We mainly use the instrument for Western blot analysis, which is routinely used in our lab for analyzing protein expression,” confirms Nguyen.

Nguyen will be defending her research in a public seminar next month with the help of the publication-worthy analysis from the Azure c400 Imager. She looks forward to how her work may influence future cancer microbiome studies and how the Slade Lab’s work can help close our knowledge gap on understanding disease-centric relationships between biological systems and microbes.

Together, Nguyen and the Slade Lab team will continue to use the Azure c400 Imager in their recent discoveries in an effort to eliminate F. nucleatum to combat disease. Their research helps to develop more effective cancer treatment methods.

For more information on the Slade Lab and Dr. Slade’s research at Virginia Tech, check out their lab’s website.

More research done with the Azure 400

Ready to learn more about how easy Western blotting is by using an Azure Imager?

Set up a free virtual demo with the Azure Imaging Systems! We'd love to meet with you and your lab.
Two scientists looking at multiplex fluorescent Western blot on Azure 600 Western blot imager
Revolutionizing the way you Western blot! Azure Imagers are high performance Western blot imaging systems capable of NIR fluorescence, visible fluorescence, and chemiluminescence.

North Carolina’s Elite Christmas Tree Industry

Categories
Customer Spotlight Imaging Western Blotting

Customer Spotlight: Adarsha Devihalli, PhD Candidate at North Carolina State

Since the release of this interview, the Azure c400 has been upgraded to the Azure 400, a flexible fluorescent imager that enables three color fluorescent detection for dyes in the visible range.

Nestled in the southern region of the Appalachian Mountains is an environmentally beneficial abundance of Fraser fir—the most sought-after Christmas tree in the USA. Thanks to its charming aroma, soft and durable needles, and eye-catching silhouette the tree forms the foundation of a multi-million dollar industry in North Carolina. It is these qualities combined with this unique geography that make North Carolina the second-leading Christmas tree producer in the United States. And while Fraser firs are heavily popular with holiday enthusiasts, they’re also extremely vulnerable to Phytophthora, a common cause of root rot disease.

"The Azure 400 Imager comes in [and is] a multi-user instrument…so we don’t have to run different instruments or look for labs that have all the instruments for us. Once I’m sure I’ve identified Phytophthora, I can use the cultures for my downstream experiments.”

Adarsha and Dr. Whitehill standing next to azure c300
Adarsha and Dr. Whitehill with Azure 400 imaging system in their lab.

Several scientists at North Carolina State University are not letting this pathogen get in the way of Christmas tree production. For PhD student Adarsha Devihalli, the solution is in the molecular details. His research focuses on studying a particular strain of Phytophthora and its genetic code. His initial work focused on pathogen identification. In this next phase of his research, he will use functional genomics tools to enable the identification of genes in the pathogen important for the initiation of the infection process.

Devihalli isn’t the only one working on Phytophthora, either. He is a member of the Christmas Tree Genetics (CTG) Program, headed by Dr. Justin G. A. Whitehill, Assistant Professor and Director of the Christmas Tree Genetics Program at NC State University.

Under the guidance of Dr. Whitehill, Devihalli is studying this devastating disease to better understand the issues at hand. Together, Whitehill CTG lab members are working towards the development of novel genomic resources for Fraser fir to combat several pests of these celebrated trees.

How the samples are collected

To begin his experimental process, Devihalli first visits the NC Department of Agriculture’s research station in Ashe County – located approximately four hours away from the university in Raleigh. He looks for disease-related symptoms on Fraser firs, collects samples, and returns to the lab for culturing, identification, and analysis using the Azure 400 Imaging System.

Azure 400 Visible fluorescent imaging system
The Azure 400 is capable of three-channel visible fluorescence detection, which enables sensitive multiplex detection of Western blots, fluorescent biomolecules and Cy2/Cy3/Cy5 or similar fluorochromes. This fluorescent imager allows users to simultaneously image and quantify up to three different targets.

Looking to the future

Together, the Whitehill CTG lab and Devihalli intend to use their experimental results to help further current knowledge of the Fraser fir genome, and uncover potential genetic resistance mechanisms to Phytophthora root rot.  Ultimately, they plan to develop better mitigation methods for root rot in the country’s most beloved Christmas tree.

“At present, there is no publicly available sequencing information for these species,” explains Devihalli. “We don’t have a genome sequence for Fraser fir, so this is a big goal for our lab [yet].”

DISCOVER: Azure 400 Imager

For more information on Dr. Whitehill’s Christmas tree research at NC State, visit https://research.cnr.ncsu.edu/sites/whitehilllab/