How the Sapphire Scanner is Used to Better Grocery Store Tomatoes

5 minute read

JOIN THE AZURE INSIDER CLUB

For the latest publications, promotions, and news on upcoming products sent weekly to your inbox

ASK A SCIENTIST

Got a question? Let us help! Describe the problem you’re having and one of our experts will reach out.

Few things are more disappointing than a tasteless, mealy grocery store tomato. These bland fruits are pale imitations of the vine-ripened tomatoes available from the garden at the end of summer. Tomatoes are perishable, and providing ripe, high-quality tomatoes that maintain their texture and nutritional content is a challenge for commercial growers.

recent publication by Tsafouros et al from the Institute of Olive Tree in Greece provides a window into the intense, ongoing research aimed at understanding how and why tomatoes and other fruits ripen under various conditions. Such studies could improve the postharvest shelf-life and the quality of commercially grown tomatoes.

Growing the tomatoes used in this study

For this study, tomatoes were grown in a greenhouse and either picked at “commercial maturity” (when the tomato is just turning color) or left on the plant to mature for an additional week. The harvested tomatoes were stored at 5, 10, or 25 °C and after 7 days were compared to each other and to tomatoes left to ripen on the vine.

Tomatoes are typically picked before ripening and stored and transported at low temperatures in an attempt to increase the shelf-life. Tsafouros et al examined the effect on ripening of storing picked tomatoes at various temperatures for a week. The authors also characterized in detail the effect of storage temperature on the metabolism of polyamines, compounds known to play a role in fruit ripening and the content of which are known to be associated with tomato quality and shelf life.

The role of temperature in mediating postharvest polyamine homeostasis in tomato fruit
Chemiluminescent Western blot showing the role of temperature in mediating postharvest polyamine homeostasis in tomato fruit

How the research was conducted

The authors carried out an exhaustive biochemical and molecular biological characterization of polyamine metabolism in the tomatoes. They assessed the total content of a variety of polyamines, the activity of the enzyme responsible for breaking down polyamines, the expression of all 23 genes encoding factors known to be involved in polyamine metabolism, the levels of the proteins involved in polyamine synthesis, and the levels of hydrogen peroxide, a biproduct of amine oxidases acting on polyamines. Protein levels were measured by chemiluminescent Western blots imaged using the Sapphire Biomolecular Imager.

Since the release of this publication, the Azure Sapphire has been succeeded by the new Azure Sapphire FL, which was designed to be the flexible choice in bringing precise quantitation of nucleic acids and proteins. Learn more.

Sapphire FL biomolecular imager
The new Sapphire FL images phosphor screens with high sensitivity. With customizable and user-changeable laser and filter modules, it easily adapts to a lab’s changing needs and advancing research.

Learn more about the Sapphire imager and how it can support your research by requesting a quote.

The findings

Their results demonstrate that cold storage alters polyamine metabolism, and support storage of tomatoes at 10°C after picking at commercial maturity. Lower temperatures appeared to induce a stress response, perhaps to protect against chilling injuries, while higher temperatures were associated with lower polyamine levels and lower quality fruit.

Have you published with an Azure instrument?

We’d love to read it! Email your publication to us and we’ll send you something for sharing.

Let us show you just how easy getting good data can be. Fill out this form to be contacted by a life science expert today!

Check out recent blog posts


6747 Sierra Court, Suite A-B
Dublin, CA 94568
United States

Tel: (925) 307 7127
Fax: (925) 905-1816
Info@azurebiosystems.com

Copyright © 2024 Azure Biosystems Inc.
Shopping cart0
There are no products in the cart!
Continue shopping